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Abstract
Today’s datacenter applications rely on datastores that are required

to provide high availability, consistency, and performance. To achieve

high availability, these datastores replicate data across several nodes.

Such replication is managed through a reliable protocol designed

to keep the replicas consistent using a consistency model, even in

the presence of faults. For several applications, strong consistency

models are favored over weaker consistency models, as the former

guarantee a more intuitive behavior for clients. Furthermore, to

meet the demands of high online traffic, datastores must offer high

throughput and low latency.

However, delivering both strong consistency and high perfor-

mance simultaneously can be challenging. Reliable replication pro-

tocols typically require multiple rounds of communication over the

network stack, which introduces latency and increases the load

on network resources. Moreover, these protocols consume consid-

erable CPU resources, which impacts the overall performance of

applications, especially in high-throughput environments.

In this work, we aim to design a hardware-accelerated system

for replication protocols to address these challenges. We approach

offloading the replication protocol onto SmartNICs, which are spe-

cialized network interface cards that can be programmed to im-

plement custom logic directly on the NIC. By doing so, we aim

to enhance performance while preserving strong consistency, all

while saving valuable CPU cycles that can be used for applications’

logic.

1 Introduction
Modern applications and cloud services rely on distributed datas-

tores to keep data safe and accessible. Distributed datastores must

balance the trade-off between consistency and performance. Often,

they compromise on the strength of the consistency guarantees for

performance. Weak consistency models, such as eventual [33, 42],

timeline [4], snapshot [7] and causal [32] consistency, favor perfor-

mance by relaxing consistency; However, these weakly consistent

models can be challenging to work with, as they often require devel-

opers to write custom code to achieve stronger semantics [49]. To

overcome these limitations and improve programmability, coordina-

tion services such as ZooKeeper [20] and Chubby [11], along with

geo-replicated databases such as Spanner [15] support strong con-

sistency guarantees using algorithms such as variants of Paxos [27–

29, 31, 34, 44, 50, 51].

However, while strongly consistent approaches are more de-

sirable for correctness and programmability, they come at a per-

formance cost. In many of strong consistency models, all write
operations are serialized at a special node, generally referred to as

the leader, which severely limits throughput in write-heavy work-

loads. Some systems attempt to address this limitation. For example,

Attiya et al. [6] propose a solution that achieves strong consistency

even in the presence of failures, without relying on consensus algo-

rithms like Paxos to determine the order of writes. However, in
their protocol, each read operation still requires communication

with a quorum of replicas, which can significantly reduce read
throughput [48].

More recent works, including Microsoft’s FaRM [16] and several

systems inspired by it [10], have shown that it is possible to achieve

both strong consistency and high performance. These systems store

data entirely in memory and leverage high-end networking tech-

nologies such as RDMA [3] to avoid the traditional bottlenecks

associated with storage and TCP/IP networking stack in strongly

consistent systems. However, even in these systems, the CPU re-

mains the limiting factor, as it is responsible for managing complex

protocols and processing replication messages on each replica.

Our preliminary results show that across a variety of state-of-

the-art replication protocols, between 15% to 49% of the CPU cycles

are spent on network operations. Moreover, up to 68% of the CPU

cycles are used by the replication operations. With Moore’s law

slowing [30], the prospects for significant future improvements in

CPU performance are limited; therefore, to scale the performance

of strongly consistent protocols, developing specialized hardware

is becoming a reasonable option.

An increasingly popular approach in modern computing is the

use of accelerators to offload workloads from CPU, thus, freeing up

CPU cycles for other tasks. In addition to high-speed data transfer

using RDMA, network components like programmable switches

and SmartNICs are emerging as key examples of such accelerators.

These accelerators offload parts of the network stack to enable the

processing of data as it traverses the network; therefore, they can

potentially allow distributed systems to shift computation away

from the CPU. While recent work shows that security-related tasks

(e.g., encryption/decryption), compression, and tenant isolation in

datacenters can be executed efficiently [18, 26, 53], there is currently

limited research demonstrating the offloading capabilities of these

accelerators for replication protocols.

This paper proposes a new system called Chaapar that offers
hardware-accelerated replication protocols using SmartNICs. At

its core, Chaapar aims to reduce the CPU overhead of replication

protocols on the host by offloading replication operations to the

SmartNIC, thereby freeing up CPU cycles. By implementing key

replication logic directly on the SmartNIC, Chaapar minimizes

communication overhead and latency between replicas. Moreover,

Chaapar integrates seamlessly with existing state-of-the-art datas-

tores and cloud storage services while running them on the host.

The system introduces an innovative architecture where Smart-

NICs cache data to minimize the PCIe overhead between the host

and SmartNIC, thus optimizing the latency. With this architecture,

Chaapar addresses the issues in prior work (Section 4): its scala-

bility is not limited by the available memory on the SmartNIC, as
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it integrates with the host’s memory to handle larger datastores

efficiently. We put particular effort into the design of Chaapar with

these innovations to make it agnostic to different replication proto-

cols, tailored towards multi-threaded, RDMA-enabled, in-memory,

replicated datastores, and practical to use in datacenter deploy-

ments.

The main contributions of this paper are the followings:

• We show that replication protocols, regardless of their design,

incur significant CPU overheads that can limit their performance.

• We present Chaapar, a hardware-accelerated system for replica-

tion protocols that offloads replication operations onto Smart-

NICs. With its design, Chaapar optimizes communication both

between replicas and between the host and the SmartNIC, all

while freeing up CPU cycles on the host.

The rest of the paper is organized as follows: Section 2 provides

the necessary background. Section 3 evaluates the CPU usage of

various replication protocols and identifies the sources of overhead.

Section 4 reviews key prior work in the field, and highlights their

limitations and challenges. Section 5 introduces the design of Chaa-

par, our hardware-accelerated replication protocol system. Finally,

Section 6 discusses the current status of our work, and outlines

progress, challenges and future directions.

2 Replicated Key-Value Stores
Key-Value stores (KV-stores) are the backbone of data storage sys-

tems, e.g., databases. A KV-store stores data as a collection of key-

value pairs, generally in hashtables or LSM trees, and provides a

read/write API that enables clients to perform operations on the

stored data. KV-stores are widely used as either primary stores, for

example in Redis [45] and RAMCloud [40], or caches in database

systems such as Memcached [52] and disk-based datastores such

as LevelDB and RocksDB [13].

KV-stores are often replicated across multiple servers, usually

ranging from 3 to 7 instances, known as the replication degree, to

increase throughput and provide data availability in the presence of

faults [25]. The replication degree presents a trade-off between cost

and fault tolerance: while adding more replicas enhances fault toler-

ance, it also raises the overall deployment costs and may negatively

impact performance. Clients connect to these replicated KV-stores

through sessions. The order of requests within each session is de-

fined as the session order. To ensure that concurrent accesses to

KV-stores operate as expected, it is essential to maintain the replicas

consistent.

The consistency model refers to the relationship between all

replicas towards reflecting a coherent view of the data to all clients.

Weaker consistency models are known for their high performance

by allowing more flexible data access patterns in distributed sys-

tems. However, this flexibility often complicates programming, and

developers need to manage synchronization explicitly. In contrast,

stronger consistency models strive to create the illusion of access-

ing data on a single server, meaning that all operations happen in

a globally agreed order. While these models provide predictable

behavior and simplify programming, they may reduce the overall

system performance due to the need for more coordination among

replicas. In this work, we focus on strong consistency models such

as Sequential Consistency and Linearizability [8].

In a replicated KV-store, a consistency model is enforced through

replication protocols [17, 20, 22, 25, 28, 41], which manage the coor-

dination between replicas and perform data replication. Replication

protocols generally rely on consensus algorithms to achieve agree-

ment among replicas on the order of operations. These algorithms

require multiple rounds of communication to reach an agreement.

Decisions in consensus algorithms are constrained by the latency

of network round-trip times.

Achieving high performance while maintaining strong consis-

tency and fault tolerance is a well-known challenge for replication

protocols. In the context of the KV-store, high performance is gen-

erally defined as low latency and high throughput. The main two

KV-store operations, read and write, require different optimiza-

tions and design considerations to provide high performance.

≻Read: To achieve high performance for reads, it is crucial to serve
read operations from any replica, i.e., reads are load-balanced.

Load-balancing reads remains challenging for many replication

protocols. Protocols like Paxos generally require communication

between replicas to agree on the correct read value. Other protocols,

such as Primary-backup [29], enforce that only one replica can han-

dle reads for a key. Similarly, Chain-Replication (CR) [47] protocol

serves read operation at a node referred to as the tail node.

≻Write: Achieving high performance for write operations is even

more difficult than for reads. A replication protocol requires the

following properties to deliver high performance writes.

• Inter-key concurrency: Independent writes on different keys

should proceed in parallel to enable multi-threaded execution.

ZAB [23], for instance, serializes all writes through the leader,

which limits concurrency.

• Fast coordination: Performing write operations requires coordi-

nation among replicas to agree on the order of updates visible to

the programmer. The coordination can generate many network

activities among replicas. Traditional networking stacks, such as

TCP/IP, are not optimized for low latency or specific communi-

cation patterns, which can cause agreement protocols to become

a bottleneck in a replicated KV-store. Moreover, these stacks rely

on CPU resources and consume CPU cycles that could other-

wise be used to handle application tasks. The increased CPU

consumption can negatively impact the overall performance of

running applications. Recent work shows that the use of high-

end networking technologies may enhance the performance of

replication protocols – especially on writes [25, 48].

3 CPU Overheads of Replication Protocols
Mainstream replication protocols typically follow a leader-based

design, where a single node coordinates all write operations. Proto-
cols such asMultiPaxos [28], Raft [39], ZAB, CHT [14], and Primary-

backup rely on a specific replica, generally referred to as a leader,

to manage replication and ensure consistency. While effective, such

a centralized approach can create bottlenecks, particularly under

high load. To mitigate this limitation, some replication protocols dis-

tribute request handling across replicas. For instance, in CR, which

forms a chain of replicas, write requests are directed to the head

node while reads are processed at the tail; potentially reducing

contention on a single coordinator. CRAQ [46] improves over CR

by allowing reads from all replicas, reducing read latency, but the
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Figure 1: CPU usage breakdown across replication protocols.

head node must still initiate all writes. Other protocols, such as

Hermes [25], AllConcur [43], Tempo [17], and Derecho [22], take

decentralization further by allowing any replica to handle write
requests and spread the workload more evenly.

In this section, we demonstrate that despite these design differ-

ences, all replication protocols impose significant CPU overhead.

Coordination, message processing, and consistency enforcement

consume valuable CPU cycles. We analyze how replication proto-

cols, regardless of their architectural choices, contribute to CPU

resource contention and explore a potential solution to alleviate

this burden.

We profile four replication protocols: MultiPaxos, CRAQ,Hermes,

and CHT. To keep the comparison fair, we use the Odyssey frame-

work [48]. Odyssey implements these protocols in a multi-threaded

design, and leverages high-end RDMA-enabled NICs to optimize

network operations. In our experiment, we run each protocol inside

a cluster of five replicas. These replicas are connected through a

56Gbps InfiniBand switch. We measure the number of CPU cycles

spent on three categories of operations: 1○ Protocol-specific opera-

tions, such as invalidation, write commit, write ordering, versioning

(timestamping), etc.; 2○ Network-specific operations, such as broad-

casting and multicasting messages as well as receiving and parsing

them, and 3○ the Rest category, which includes client operations

such as sending read and write queries. Our experiment generates

a uniform read/write trace with 20% to 80% ratio. The KV-store is

pre-populated with one million KV pairs, all replicated on all nodes.

Similar to prior studies, the size of keys and values are 8 and 32

bytes, respectively [5]. We set the failure rate to zero to observe the

CPU usage in the absence of failure.

Figure 1 illustrates the CPU breakdown across different protocols.

Note that the figure demonstrates CPU breakdown for leaders of

MultiPaxos and CHT, as well as the head replica in CRAQ protocols.

While we show the profiling results of a random nodewhen running

the Hermes protocol, which is decentralized, our results show that

the CPU usage remains consistent across different replicas when

the trace follows a uniform distribution.

We observe that amajority of the CPU cycles are used by protocol-

and network-specific operations of these protocols. As the figure

shows, CPU usage for protocol-specific operations varies from 26%

to 68%. The figure also shows that these protocols spend between

15% and 49% of the CPU cycles on network-specific operations.

Where does the overhead come from? We identify three main

sources of overhead for replication protocols:

1 Communication: Broadcasting/multicasting of messages such

as proposal, invalidation, validation, etc., to all replicas incurs un-

avoidable overhead.

2 Expensive PCIe transactions: To reduce network latency, the

implementation of these protocols in the Odyssey framework uses

RDMA and relies on spin loops to fetch messages as quickly as

possible. While RDMA provides low-latency networking, transmit-

ting the messages from NIC to host (and vice versa) over PCIe is

expensive and increases end-to-end latency. Using spin loops may

reduce latency, but it does not eliminate the inherent PCIe overhead

and increases CPU usage. One-sided RDMA operations are often

seen as an attractive solution for bypassing remote CPU involve-

ment; however, prior works such as Odyssey have demonstrated

that overall, they increase the CPU load on the initiator and limit

batching over the network and PCIe, leading to higher overhead.

3 Concurrency ordering: Different replication protocols use

approaches to enforce either total order (e.g., ZAB, MultiPaxos,

Raft, Derecho, AllConcur, and Mencius) or per-key order (e.g., CHT,

CRAQ, Classic Paxos and Hermes). Managing write ordering adds

software overhead to the system.

Insight: Hardware accelerators are valid candidates to implement

complex replication protocols and reduce network latency by of-

floading the operations. Implementing the protocols on hardware ac-

celerators can save CPU cycles spent on broadcasting/multicasting

messages as well as concurrency ordering.

4 Replication Protocols on SmartNICs
In addition to high-end RDMA-enabled networking stacks, mod-

ern networks increasingly feature programmable components like

switches and NICs that provide on-device computation. These com-

ponents enable the manipulation of data as it transits the network

and allow distributed systems to offload computations and improve

performance. SmartNICs, like Nvidia’s BlueField [38], Huawei’s

IN5500 [19], Broadcom’s Stingray [9], Marvell’s LiquidIO [35], and

Netronome’s Agilio [37], include onboard memory ranging from 8

to 32 GB, along with different computation units, such as SoC or

FPGA, integrated into NICs. These NICs allow developers to access

the computation units to make it possible to offload customized

computation logic.

The advent of SmartNICs has sparked some interest in their

utilization within the distributed systems community. SmartNICs

have the potential to enhance the performance and efficiency of

KV-store operations, particularly in the context of consensus and

replication protocols. Recent works, such as ZABFPGA [21] and

Waverunner [5], are generally centered around FPGA-based Smart-

NICs to implement custom logic for protocol- and network-specific

operations to improve throughput and reduce CPU bottlenecks.

▶ ZABFPGA: offloads the ZAB protocol onto an FPGA-based

SmartNIC, integrating a network stack, atomic broadcast module,

and KV-store directly on the FPGA. The network stack is based on

TCP and optimized for low latency by employing dataflow pipelines,

and tailored for datacenters. The atomic broadcast module repli-

cates write requests so that all nodes receive the same sequence

of operations, and handles reads locally. By integrating the KV-

store with the atomic broadcast module, ZABFPGA eliminates PCIe

overhead.
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Limitations: While integrating the KV-store with the atomic

broadcast unit enhances performance and concurrent data access,

ZABFPGA’s hardware-only approach presents significant challenges:

≻ Scalability limitation:Due to the limited DRAM capacity of Smart-

NICs (usually up to 32 GB), ZABFPGA cannot scale effectively and

is unable to handle KV-stores with hundreds of gigabytes, which

severely limits its applicability for large-scale systems.

≻ Challenges of FPGA development: FPGA implementation of com-

plex replication protocols requires specialized expertise, including

the development of a hardware network stack and handling op-

erations like leader election and failure recovery. These tasks are

error-prone, even in software, and addressing all corner cases in

hardware is notoriously difficult, making the design less suitable

for practical deployment.

▶Waverunner: attempts to address the scalability issue of ZABF-

PGA by using a hybrid approach that combines hardware and

software components. Unlike ZABFPGA’s hardware-only design,

Waverunner offloads the network-related parts of the Raft protocol

to the FPGA-based SmartNIC, while the rest of the protocol runs in

software on the host. The hardware component handles common

Raft messages, bypassing the kernel network stack, while more

complex operations such as leader election and failure recovery

remain in the software. This hybrid approach makes the system

more practical by allowing fallback to a software-only mode when

necessary.

Limitations:
≻ PCIe overhead: Unlike ZABFPGA, Waverunner runs a significant

portion of Raft protocol as well as the KV-store on the host, requir-

ing expensive communication between the host and the SmartNIC

over PCIe, which introduces additional latency.

≻ Challenges of FPGA development: While Waverunner offers a

clean design by offloading only some parts of the Raft protocol, it

still faces a similar practical issue as ZABFPGA: implementing even

small parts of the protocol on FPGA is challenging.

Takeway: Both ZABFPGA and Waverunner offer innovative ap-

proaches by offloading replication protocols to SmartNICs, but they

fail to fully address practical concerns for real-world deployments

in datacenters. ZABFPGA’s hardware-only approach struggles with

FPGA development complexity and error-prone operations like

leader election. Furthermore, its reliance on the limited memory of

SmartNICs hinders scalability, making it unsuitable for large-scale

systems that require handling vast amounts of data; thus, diffi-

cult to deploy effectively in production environments. Waverunner,

despite its hybrid design, suffers from latency due to PCIe com-

munication between the host and offloaded components. Neither

system fully leverages RDMA; instead, they use FPGA resources to

implement custom network stacks, which is a waste of resources.

5 Design Overview
5.1 Insights
In this work, we take a pragmatic approach to design a system

that can be effectively deployed in datacenters. Building on in-

sights gained from studying related work in hardware-accelerated

replication protocols, we find the followings:
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Figure 2: Overview design of Chaapar

Breaking the trade-off between consistency and performance:
While achieving low latency and high throughput in strongly con-

sistent systems is inherently challenging, our goal is to overcome

this trade-off. To achieve low latency, it is critical to minimize com-

munication over PCIe, as it introduces a significant delay—at least

500ns round-trip latency—which impacts performance in latency-

sensitive systems [24]. In systems like Waverunner, where much of

the Raft protocol’s logic is executed on the host, frequent commu-

nication between the host and SmartNIC over PCIe adds additional

latency. This constant data exchange over PCIe prevents the sys-

tem from optimizing latency. By offloading more processing to the

SmartNIC, PCIe traffic can be reduced, leading to lower latency

and improved performance. Furthermore, since both Waverunner

and ZABFPGA implement custom network stacks, they overlook

the advanced RDMA features in SmartNICs. RDMA can bypass the

CPU, reduce memory copies, lower latency, and ease CPU load.

Additionally, RDMA’s batching capabilities can help reduce PCIe

transactions, further optimizing PCIe overhead. For high through-

put, our system must be designed to easily adopt high-performance,

leaderless replication protocols such as Hermes and AllConcur.

Leaderless protocols allow for better scalability by removing bottle-

necks typically associated with leader-based designs and allowing

concurrent writes. Such a careful design allows the system to bal-

ance strong consistency with performance, breaking the traditional

trade-off between the two.

Practical deployment for datacenter:While FPGAs offer flex-

ibility and performance, they are challenging to deploy in real-

world datacenter environments due to the specialized skills and

experience required for their development. Moreover, FPGA-based

systems face longer development cycles and higher risks of design

errors, making them unattractive for large-scale, production envi-

ronments. Additionally, a practical solution should also integrate

easily with existing production-grade datastores, without requiring

major changes or causing disruptions to ongoing operations.

5.2 Chaapar System
The central hypothesis explored in this paper is that strongly con-
sistent replication protocols resemble cache coherence protocols by
sharing structural and operational similarities with them. Cache

coherence protocols, proven to be efficiently managed by hardware-

based state machines, serve as a powerful design inspiration. We

aim to adapt these well-understood hardware-based coherence pro-

tocols to distributed systems at the datacenter scale. To do so, we

design Chaapar, a system that offers hardware-accelerated repli-

cation protocols using SmartNICs. Chaapar is designed to offload
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the replication operations from the host CPU, free up precious

CPU cycles, and improve latency. Chaapar consists of three key

innovations: 1○ Inspired by the design of modern CPUs, Chaapar

implements a consistency controller on the SmartNIC of each replica

to reduce communication overhead over the network and PCIe. In

this design, the consistency controller manages the consistency

between the datastore on the hosts or the cloud storage services.

2○ Chaapar maintains a software-based data cache on the Smart-

NICs to improve end-to-end latency. To perform read and write
operations, our system follows a dual-path approach: The fast path

is used when the requested key exists in the software cache on the

SmartNIC. On the slow path, the consistency controller fetches the

required data from the datastore on the host using RDMA network

operations to optimize network overhead. 3○ Chaapar implements

a datastore interface to seamlessly integrate with the state-of-the-art

datastores and cloud storage services, and run them on the host

CPUs of replicas. Figure 2 demonstrates Chaapar and its compo-

nents cooperatively working to provide reliable replication protocol

using SmartNICs.

5.3 Consistency Controller
At the core of Chaapar, there is a consistency controller – a hardware-

accelerated protocol engine residing on the NIC – to perform

replication- and network-specific operations of protocols to free

the host CPU. The consistency controller on the SmartNIC is re-

sponsible for enforcing consistency and comprises three main com-

ponents:

Request Handler. Request handler manages communication with

other replicas for propagating writes and collecting acknowledg-

ments, and also handles client requests asynchronously. For the

communication with other replicas, this unit leverages the RDMA

engine on the SmartNIC to implement efficient multicast function-

ality. It also provides several network interfaces, including Linux

socket, gRPC, and RDMA to the clients and processes incoming

client requests, and forwards them to the next component in the

pipeline, the consensus unit.

Consensus Unit. Responsible for implementing the consensus

protocol, the consensus unit processes read and write operations

forwarded from the request handler. The consensus unit deploys

a digraph-based network overlay over the replicas to define the

multicast pattern. It leverages the overlay network to support leader-

based, chained, and leaderless protocols. In the current design, a

leaderless approach is implemented that uses a 2-phase protocol to

propagate updates to each of the replicas. Thus, a write operation

multicasts the new object in the 1st phase to all replicas and waits

for acknowledgments from them; then, in the 2nd phase, it sends a

commit message to all replicas. The consensus unit provides fast lo-

cal reads, i.e., it services the read requests without communicating

with other replicas. To ensure strong consistency, the consensus

unit keeps track of uncommitted writes to block read requests to

the same key with pending writes. Transitions between states are

triggered either by incoming requests from the request handler or

by event timers, which are used to implement timeouts for tasks

like detecting failed nodes.

Log Manager. The log manager maintains an update log essential

for fault tolerance and replaying operations in case of failures.

When the consensus unit receives a write request, the operation
is appended to this log in an append-only manner. Later, it reads

out these operations and sends them as proposal commands to

other replicas. Upon committing an operation, an event is also

added to the log. In the event of failure, synchronization begins

from the section of the log that holds the command entries to

ensure consistency across replicas. Additionally, the log can be

compacted up to the last successful write to the datastore on the

host; the datastore interface (Section 5.5) signals the controller for

each successful write, which can be leveraged by the controller

for efficient log management and space optimization.

5.4 Dual-Path Design Caching
In our architecture, the datastore operates on the host. In order to

hide the latency of accessing the host through PCIe, the consistency

controller maintains a DRAM-resident KV-store on the SmartNIC

as a software-based data cache. We design a dual-path mechanism

to handle read and write requests to enable the system to dynami-

cally switch between fast and slow paths based on data availability

in the software cache.

Fast path. On the fast path, the access to the host is off the critical

path; therefore PCIe latency does not contribute to the overall

latency of the operation.

All write requests are processed on the fast path. As illustrated

in Figure 3a, when the request handler receives a write request, it

forwards it to the consensus unit, which commits the write (after

communicating with other replicas), notifies the client, and caches

the key-value pair on the SmartNIC. In this design, updating the

datastore on the host is batched and performed asynchronously,

keeping host access off the critical path.

Similarly, when a read request results in a cache hit, it is also
processed on the fast path, as shown in Figure 3b. Here, the request

handler forwards the request to the consensus unit, which checks

for any uncommitted writes to the key. If no uncommitted write
exists, the request is serviced directly from the software cache.
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Slow path. If a read request results in a cache miss, the request is
handled on the slow path. In this scenario, the consistency controller

communicateswith the datastore on the host to retrieve the required

data: As depicted in Figure 3c, the request handler passes the read
request to the consensus unit, which then fetches the data over

PCIe from the host. While servicing the client, the controller caches

the key-value pair for future fast-path access.

This design leverages hardware acceleration on the NIC to of-

fload consistency responsibilities from the host and minimizes the

communication over PCIe to effectively balance performance with

fault tolerance and enable high-speed, strongly consistent opera-

tions at scale.

5.5 Datastore Interface
Unlike prior work, where the replication protocol is integrated with

a simple KV-store, Chaapar is designed to seamlessly integrate with

state-of-the-art and industry-standard KV-stores (e.g., Redis and

Memcached) as well as cloud storage services (e.g., Amazon S3 [1]).

This is achieved through the datastore interface. The datastore

interface is a key component running on the host that provides an

abstraction layer for accessing the underlying datastore. Its primary

role is to manage and route requests from the consistency controller

on the SmartNIC through RDMA.

This component serves the read and write operations, depend-

ing on the path. On the fast path, the datastore interface handles

requests when a write operation from the consistency controller

must be applied directly to the datastore. It ensures that the op-

eration is durably committed to the storage backend and notifies

the consistency controller upon a successful write. Signaling the
consistency controller enables the log manager to perform log com-

paction and release log space for future operations.

On the slow path, the datastore interface addresses cache misses

encountered during read operations. When the consistency con-

troller identifies a cache miss for a requested key, it forwards the

read request to the datastore interface, which retrieves the data

from the datastore and returns it to the consistency controller. This

setup minimizes latency by keeping the read processing stream-

lined, avoiding direct host involvement unless necessary.

Additionally, the datastore interface functions as a flexible adapter

for the datastore, providing an abstraction that allows the system

to operate with various local or online datastore implementations

without requiring modifications to the consistency controller.

Since writes to the datastore are off the critical path, the consis-

tency controller can optimize performance by maintaining a write
buffer on the SmartNIC. When this buffer fills, a batch of write
operations is sent to the datastore interface, reducing the frequency

of individual messages. With this design, PCIe communication over-

head is well-managed; for instance, the 32-byte header overhead for

PCIe packets can be significant for small messages. The batching

strategy minimizes the effect of this overhead to further optimize

the over the PCIe communication.

5.6 Leveraging SoC-Based SmartNICs
Chaapar explores SoC-based SmartNICs as an alternative to FPGA-

based SmartNICs. SoC-based SmartNICs offer several advantages

that are aligned with our insights and make it more suitable for

implementing replication protocols efficiently:

ARM cores: SoC-based SmartNICs are generally equipped with

ARM cores, thus we can offload replication protocols without requir-

ing hardware description languages like those needed for FPGAs.

From the NIC’s perspective, the ARM subsystem functions as a sec-

ond full-fledged host with its own network interface. This makes

development more accessible and easier to debug and maintain.

Ready-to-useRDMA-enabled network stack:Unlike some other

solutions that require rebuilding a custom network stack, RDMA

capabilities of SoC-based SmartNICs provide ultra-low latency and

high bandwidth out of the box. This allows us to take full advantage

of its high-performance networking without reinventing the wheel,

streamlining the implementation of the replication protocols.

Minimizing PCIe Transactions: Programming on SoC-based

SmartNICs is more straightforward than FPGAs and it enables us

to implement most of the replication protocol logic directly on the

SmartNIC. This feature allows us to minimize PCIe communica-

tion, which typically introduces latency, and instead handle more

processing on the SmartNIC itself; hence, we can free up host-side

CPU cycles.

6 Implementation & Current Status
In this work, we have implemented the request handler and the

datastore interface on the BlueField-3 card [12], which is a SoC-

based SmartNIC. Our work is in progress and further development

of the consensus unit and various optimizations remain to be imple-

mented. While offloading replication protocols to SmartNICs offers

promising benefits in reducing host CPU overhead and improving

network efficiency, several challenges must be addressed to fully

realize the potential of this approach:

Limited compute power of SmartNIC SoCs: SmartNICs, like

BlueField-3, are equipped with computation cores designed primar-

ily for power efficiency rather than high performance. As a result,

their computational capabilities are significantly lower compared to

modern CPUs used in hosts. To overcome this limitation, it is crucial

to maximize the use of specialized hardware components available

on SmartNICs, such as DMA engines. These components are well-

suited to handle data transfers, allowing the ARM cores to focus

on protocol-specific operations without becoming overloaded.

Challengeswith implementing software cache on SmartNICs:
Many state-of-the-art hashtables are heavily optimized for high-

performance x86 CPUs, which benefit from faster memory access

compared to the ARM cores found in BlueField-3. This makes these

designs unsuitable for the low-power ARM cores on SmartNICs,

which lack the equivalent high-speedmemory access. Consequently,

careful design of the request handler in the consistency controller

is necessary to minimize contention and concurrent access to the

shared software cache. There is exciting potential for future re-

search to develop efficient, concurrent hashtables specifically tai-

lored for ARM cores, which could further enhance the performance

of SmartNIC-based replication protocols.

However, these challenges are not inherent to the design or use

of SmartNICs with ARM cores. Each generation of SmartNICs is

becoming increasingly powerful; for instance, the gap between the

2nd and 3rd generations of BlueField cards is already significant [36].
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Moreover, ARM cores themselves are not inherently unsuitable for

such tasks. For instance, Graviton ARM CPUs used in AWS have

demonstrated substantial performance and power efficiency [2].

Our design explores the use of SoC-based SmartNICs, and as the

hardware continues to evolve, we expect these solutions to become

more powerful, further closing the gap between SmartNICs and

host CPUs, and making our system even more effective.

Supporting diverse replication protocols: To support multiple

replication protocols and varying consistency guarantees, a flexible

and modular architecture is required. Different protocols, such as

Raft or Hermes, have unique requirements for message sequencing,

leader election (if needed), and failure recovery. Implementing such

diversity on SmartNICs, which are resource-constrained compared

to host CPUs, presents challenges in designing general-purpose

components that remain efficient across different use cases.

7 Conclusion
This paper introduces Chaapar, a novel system that leverages Smart-

NICs to implement hardware-accelerated replication protocols.

Chaapar is designed to offload replication operations from the host

CPU, freeing up valuable CPU cycles and enhancing overall system

performance. Inspired by modern CPU designs, Chaapar maintains

a software-based data cache and a consistency controller on each

replica’s SmartNIC to minimize communication overhead across

the network and PCIe. Chaapar introduces three key innovations:

offloading replication operations to SmartNIC’s cores, seamless inte-

gration with state-of-the-art datastores and cloud storage services,

and a dual-path approach to optimize read and write operations

using RDMA. This protocol-agnostic design demonstrates the po-

tential of SmartNICs to enhance the efficiency and flexibility of

reliable replication protocols.
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